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Numerical simulations are presented of the long time behaviour of viscous columnar 
vortices subject to non-uniform axial stretching. The relevant result is that the 
vortices reach a steady state even when the axial average of the strain is zero, such 
that they are being compressed during half of their extent. The structure of the 
flow is analysed and shown to range from local Burgers equilibrium to massive 
separation. For an intermediate range of Reynolds numbers the vortices are more 
or less uniform and compact, and it is suggested that this condition is related to 
the strong vortices observed in turbulent flows. The reason for the survival of the 
vortices under compression is traced to induced axial pressure gradients and to the 
viscous cancellation of outgoing vorticity. Theoretical analyses of the linear Burgers’ 
regime and of the onset of separation are presented and compared to the numerical 
experiments. The results are related to the observation of intermittency in turbulence, 
and shown to be consistent both with the observed scaling of vortex diameter, and 
with the lack of intermittency of the velocity signal. 

1. Introduction 
It has been recognized in the last few years that strong coherent elongated vortices 

are present among the small scales of many turbulent flows (Siggia 1981; Kerr 1985; 
Hosokawa & Yamamoto 1990; She, Jackson & Orszag 1990; Ruetsch & Maxey 1991 ; 
Vincent & Meneguzzi 1991), and that they are important in the characterization of 
the intermittent properties of high Reynolds number turbulence. It is generally 
agreed that they are formed by stretching of pre-existing vorticity, and it has been 
shown from the correlation of numerical simulations at several Reynolds numbers 
(Jiminez et al. 1993) that their radii are of the order of the Kolmogorov length and 
scale with it. It has also been shown that, along a considerable fraction of their 
length, they are near the Burgers limit, at which axial stretching is in equilibrium 
with viscous diffusion, and that the stretching itself is of the order of the mean square 
vorticity of the flow m’ (Jimhnez & Wray 1994~). This is also the magnitude of the 
average strain in the bulk of the flow. The length of the vortices is known to be large, 
comparable to the integral scale of the flow O ( 9 ) .  

A first tempting idea was that elongated vortices in turbulence were just the result 
of uniformly stretched vorticity, however it was pointed out in (Jiminez et aE. 1993) 
that this strain, if it were to hold consistently along the length of vortices, would be 
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inconsistent with the measurements of turbulent velocity, since the velocity difference 
between the two ends of the vortex would be O(o’3’) m O(u’ReJ, where ReA = u’l/v 
is the Reynolds number based on the Taylor microscale, and u’ is the mean square 
velocity. No such large velocity differences have been observed in turbulent flows, and 
the probability distribution of the velocity is known to be largely free of Reynolds 
number effects (Anselmet et al. 1984). A second unexplained observation was that 
the average circulation I‘ of the vortices increased with the Reynolds number as 

r / v  - Re!, (1.1) 

with a in the range 0.3-0.5 (Jimenez et al. 1993). Both problems were addressed in 
Jimenez & Wray (19944 It was first shown, by direct measurement of the numerical 
simulation fields, that the stretching along the vortex axes was not uniform, and 
that a substantial percentage of the points were under axial compression, rather than 
stretching. 

The result that strong vortices would survive under local compression was unex- 
pected, and it was conjectured that it was due to the presence of axial pressure waves 
that smooth the effect of the local axial strain and help to make the cores uniform. It 
was also observed in that paper that the relation in (1.1) corresponds to a fixed ratio 
between the celerity of the waves and the velocities induced by the driving strain, 
which were assumed to be of O(u’). 

The present paper is an attempt to verify those conjectures and, in particular, to 
determine the conditions under which more or less uniform vortex filaments can form 
under the action of a non-uniform strain whose spatial average is zero. We will show, 
by direct numerical simulation of vortices subject to different strain laws, that this is 
possible and that it is mediated by axial waves damped by viscosity. It will turn out, 
however, that the naive identification of the governing parameter for vortex survival, 
as the ratio of wave celerity to axial velocity, is incorrect. The right parameter will 
be identified, both theoretically and numerically. 

That axial waves make uniform vortex cores with initially variable cross-sections 
was first proposed by Moore & Saffman (1972), who used the assumption to jus- 
tify the use of uniform core size in models for the motion of vortex filaments of 
arbitrary shape. The particular case of unstrained viscous straight filaments was 
studied recently by Melander & Hussain (1994) who refer to the axial waves by 
the name of ‘core dynamics’. The waves themselves were known to Kelvin (1880) 
in the linear limit, and several model equations for their nonlinear behaviour have 
been proposed since then (Lundgren & Ashurst 1989; Leonard 1994). In most 
cases, the models are inviscid, since the waves are inertial and do not depend on 
viscosity. Caflisch, Li & Shelley (1993) have computed numerically the nonlinear 
behaviour of the waves in an inviscid vortex with a very singular initial vorticity 
distribution. 

The study of vortices under variable strain has been generally connected to vor- 
tex breakdown (Leibovich 1978). That problem is only loosely connected to ours, 
since most of the external pressure gradient is due in that case to the deforma- 
tion of the vortex, while in ours it is imposed as a boundary condition. It was 
realized early that breakdown depends on the existence of axial stationary waves, 
which can only occur if the wave celerity is at least as large as the velocity of the 
incoming flow (Benjamin 1962). This is equivalent to the naive theory used above 
to rationalize the scaling of the intensity of the ‘worms’. More recently Brown & 
L6pez (1990) have studied a case closer to ours, in which breakdown is artificially 
triggered by confinement in a rotating vessel, and have also found the naive theory 
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to be inapplicable. As in the case of unstrained vortices, most theoretical models 
are inviscid, but the effect of Reynolds number has been investigated numerically 
(Beran & Culick 1992). 

In this paper we are mainly interested in viscous vortices, and in the effect of 
Reynolds number. The equations of motion, the numerical method and the run 
parameters are described in §2. After a short description of preliminary results 
on unstrained vortices and on vortices subject to uniform strain, the numerical 
experiments using steady non-uniform strain are described in 93. The results are then 
discussed and related to the observations in turbulent flows. 

2. Numerical set-up 
2.1. Integration scheme 

The simulation code solves the initial value problem for the incompressible viscous 
Navier-Stokes equations. It is described in detail in Verzicco & Orlandi (1993) and 
only the main points are summarized here. The equations are written in primitive 
variables in cylindrical coordinates, and discretized using central second-order finite 
differences on a staggered grid, with the velocity on the faces and the pressure at the 
centres of the cells. The scheme conserves energy in the inviscid limit. While the code 
is capable of dealing with fully three-dimensional flows, most of the simulations in 
this paper are axisymmetric. 

The resulting system of equations is advanced in time by a fractional-step method. 
The first sub-step generates a non-solenoidal velocity field using a third-order explicit 
Runge-Kutta scheme for the nonlinear terms (A. Wray, personal communication) and 
an implicit Crank-Nicholson for the viscous ones. In the second sub-step the result is 
projected onto the final solenoidal velocity. The necessary Poisson equation is solved 
using trigonometric expansions, and yields a velocity field which is divergence-free to 
within the round-off error. 

Since the coordinate system is singular at r = 0, the radial component of the 
momentum equation is written in terms of qr = ru,., instead of u,. Because of the 
staggered mesh, this is the only quantity that has to be computed at r = 0, and its 
definition forces it to vanish there. 

The original code was modified to treat flows subject to an external axisymmetric 
irrotational non-uniform strain, which is considered as given. The full velocity field 
is formed by the forcing flow plus a perturbation connected to the vortex, and only 
the perturbation velocity is allowed to evolve. If the driving strain is chosen as a 
solution of the Euler equations, the perturbation velocity still satisfies the full Navier- 
Stokes equations, although the strain might correspond to fairly artificial pressure 
and velocity distributions far from the axis. In a real flow, the irrotational region 
would not be infinite, and the driving strain would be generated by other vortices or 
by the presence of walls. 

Since it has been observed in the introduction that significant strain fields with large 
coherence lengths imply unrealistic velocity differences, we will be mostly interested 
in driving strains which are periodic in the axial direction, and which have zero mean. 
This is an extreme case of variable axial stretching, which compresses a vortex along 
half of its length, and stretches it along the other half. 

Let r and x be the radial and axial coordinates and us and us the driving veloc- 
ity components in those directions. The requirement that they be solenoidal and 
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irrotational implies a stream function tp, such that 
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The elementary non-singular periodic solutions are 

S 
y ( r ,  x) = - - r I l ( p r )  sin(px), 

P2 
where S is the maximum axial strain at the axis, p = 2n/L is the wavenumber, L the 
wavelength, and 11 the first-order modified Bessel function of the first kind. 

In most of our simulations, this will be the driving strain, and L will be the length 
of the computational domain, which acts also as a periodicity wavelength for the 
whole flow. 

The axial strain corresponding to (2.2) is 

where I. is again a modified Bessel function of the zeroth order and first kind. 
Note that, when r << L near the axis, lo(br) = 1 + O(pr)*, and the driving flow is 
approximated by s(0, x )  = -S cos(Px) and us = -s(O, x ) r / 2 ,  which behaves locally as 
an axial strain with non-uniform strength along the axis, and zero mean. In fact, 
as f i  -+ 0, the velocities induced by equation (2.2) tend to us = Sx and v, = -Sr /2 ,  
which are those of a uniform axial strain S .  

Far from the axis, both the velocities and the strain generated by (2.2) grow expo- 
nentially as exp(pr). While this growth is responsible for some numerical problems 
which will be discussed below, it is no more surprising than that the radial velocity 
due to a uniform strain should grow linearly with the radius. In real flows, a periodic 
strain could be generated by an array of vortex rings of alternating signs, at some 
large but finite distance from the axis. In our model we are assuming that those rings 
do not evolve with the flow but that they drive the evolution of a straight vortex 
lying along their common axis. 

2.2. Flow parameters 
The results of our simulations are presented normalized with the vortex circulation 
r and with the axial length of the domain L. There are two dimensionless para- 
meters: a Reynolds number based on the circulation, Rer = r/v, where v the 
kinematic viscosity, and another one related to the driving strain, ReL = S L 2 / v .  
The first one characterizes the azimuthal flow generated by the vortex, which has 
typical velocities O(r /a )  at some radius a, such that a typical Reynolds number 
is a ( r / a ) / v  = Rer.  The second one is related to the axial flow induced by the 
driving strain, which is O ( S )  with a coherence length O(L), and typical velocities 
O(SL). 

The character of the flow depends on the relative magnitude of these two param- 
eters. A useful combination is obtained if the characteristic radius a is taken to be 
of the order of the viscous length based on the strain, a = ( v / S ) ’ / ~ .  The ratio of 
azimuthal to axial velocities, a Rossby number, is then 

This ratio is related to the helical angle of the velocities within the vortex. 
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Case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

S Rer 
0.0980 12.5 
0.0980 25 
0.0980 43.2 
0.0980 88.2 
0.0980 200 
0.2000 12.5 
0.2000 25 
0.2000 40 
0.2000 56.4 
0.2000 100 
0.2000 150 
0.2000 200 
0.3947 12.5 
0.3947 25 
0.3947 37.5 
0.3947 50 
0.3947 75 
0.3947 100 
0.3947 150 
0.3947 200 
0.3947 300 
0.3947 400 
0.7895 12.5 
0.7895 25 
0.7895 50 
0.7895 75 
0.7895 100 
0.7895 200 
0.7895 300 
0.7895 400 
0.1753 50 
0.5919 50 

Ken 
44.1 
86.4 

152.4 
311.2 
705.6 
90 

180 
288 
406 
720 

1080 
1440 
177.5 
355 
532.8 
710.3 

1065.6 
1420.9 
2131.4 
2841.8 
4262.8 
5683.7 
355 
710.6 

1421.1 
2131.6 
2842.2 
5684.4 
8526.6 

11368.8 
710.2 
710.2 

Rer /Re:” 

1.882 
2.689 
3.499 
5.000 
7.529 
1.317 
1.863 
2.357 
2.800 
3.726 
4.564 
5.270 
0.938 
1.327 
1.624 
1.876 
2.297 
2.652 
3.249 
3.751 
4.595 
5.305 
0.663 
0.937 
1.326 
1.624 
1.875 
2.652 
3.248 
3.751 
1.876 
1.876 

Rer / 
3.538 
5.655 
8.087 

13.016 
22.465 
2.789 
4.427 
6.057 
7.616 

11.157 
14.620 
17.711 
2.224 
3.530 
4.625 
5.604 
7.343 
8.895 

11.656 
14.120 
18.502 
22.414 

1.765 
2.801 
4.447 
5.827 
7.059 

11.206 
14.685 
17.789 
5.604 
5.604 

TABLE 1. Run parameters of the cases with steady non-uniform strain. 

Table 1 provides a list of the simulations used for the analysis of the steady periodic 
strain, in which the driving flow is given by equation (2.3). It includes values for Ro 
and for a second ratio, Rer/ReL’3, which will be found useful later. 

2.3. Numerical parameters and convergence checks 
In most of our simulations the initial vorticity field is a uniform Gaussian vortex with 
a distribution of axial vorticity given by 

r 
GJ~, x) = -e+/U)*, na2 (2-5) 

where r is the circulation and a the l /e radius. Its induced velocity is computed 
from V2u = -V x 00, where 00 = GXix is the initial vector vorticity, and i, is the unit 
vector along the axis. 

In some cases we are interested in whether disconnected vortex pieces are smoothed 
by the flow to form larger connected structures. Those pieces (‘sticks’) are built by 
letting the vorticity be equal to (2.5) along some segments of the axis and zero 
elsewhere. This naively truncated vorticity field is not solenoidal and has to be 
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6.5 7 

2 -  
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(b)  

.................................................. 
. . . . . . .  . .  -- 

............................................ 

completed before a velocity field can be computed. Let oT be the truncated vorticity. 
A straightforward variational analysis shows that a solenoidal field can be constructed 
by adding the gradient of a scalar 00 = O T + V ~ ,  where V 2 4  = -VWT. This procedure 
results in a minimum enstrophy for the difference between the original and projected 
fields.? 

The strain field given in (2.3) is periodic in x with zero spatial average, and its 
velocity field is also periodic. The initial condition is given by the driving velocity 
plus the velocity induced by the initial vortex. 

The computational domain is periodic in x, but is truncated radially at an artificial 
boundary R, where the velocity field is forced to be equal to the irrotational driving 
velocity. It would of course be desirable to have this outer boundary as far as possible 
from the axis, but the Bessel functions in the driving field (2.3) grow exponentially 
with r ,  making it impossible to extend the simulation to very large radii, because of 
numerical stability constraints. 

On the other hand, when the boundary is too close to the axis, the condition 
that o,(R) = 0 implies that do,/dr is not zero at the boundary and that there is a 
viscous vorticity flux out of the domain, which is evidenced as a loss of total axial 
vorticity, rT = J w,d3x = r L (figure lb) .  A few tests were performed to determine 
the minimum acceptable value for R. Figure l a  shows the comparison between the 
evolution of the maximum, minimum and average vorticities at the axis for R = L/2 
and R = 3L/4. Although the results are indistinguishable, the latter value was used 
in all simulations. Moreover, the conservation of total axial vorticity was checked in 
all cases, as an indicator of quality, and the total loss was always kept below 1-2%. 

In all but two cases we used L = 6 and r = 1. The last two lines in table 1 
reproduce the dimensionless parameters of Case 16 with different dimensional values, 
L = 9 in Case 31 and r = 1.5 in Case 32. They were run as consistency checks for 
the numerics, and the results of the three cases proved to be indistinguishable. 

The grid used in all simulations is 128 x 128. Grid independence was checked by 
doubling and reducing the grid for one representative case. Figure 2 shows the results 

t In fact, since the numerical simulation is formulated in terms of velocity, the vorticity is 
automatically made solenoidal after the first time step, and the result is precisely the projected field 
discussed above. This is so because any gradient is irrotational and V x wo = V x W T ,  showing that 
the velocity fields computed from both distributions are identical. 
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t 

FIGURE 2. Time evolution of the maximum, minimum and mean axial vorticities at the axis for 
different numerical resolutions: .......-, 96 x 96 grid; - , 128 x 128; - - - - ,256 x 256. Parameters 
as for Case 22 in table 1. 

0 20 40 60 
t 

FIGURE 3. Time evolution of the maximum axial vorticity at the axis for different initial uniform 
vortex cores: -, a = 0.25; ---, a = 0.5; ----, a = 1. Conditions as in Case 20 in table 1. 

obtained for the Case 22 using the standard resolution, together with those obtained 
from 96 x 96 and 256 x 256 grids. While there are some differences between the two 
smallest grids, the two largest ones agree within the precision of the plot. 

The different cases were followed until they converged to a steady state, and some 
tests were run to ensure the independence of this final state from the initial conditions. 
The typical initial condition is given by equation (2.4) with a = 0.5. For Case 20 the 
simulation was repeated with initial radii a = 1 and a = 0.25. Time histories for the 
maximum vorticity at the axis in the three cases are shown in figure 3, and converge 
to the same value. Note that the three initial conditions were chosen so that the 
maximum initial vorticities were below, above and comparable to the final value. In 
addition, another test was run in which the initial condition was taken as four short 
equidistant ‘sticks’, each of length L/6,  generated as described above. The final state 
was again indistinguishable from those starting from uniform vortices. 
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3. Results 
3.1. Relinking of unstruined vortices 

Before getting into the discussion of the results for variable driving strains, it is 
important to summarize the mechanism by which axial waves develop in vortices 
with variable cross-sections. Consider a straight vortex with constant circulation r , 
whose core radius R(x)  varies along its axis, and let uo(x) - r / R ( x )  be the order 
of magnitude of tangential velocity at the core boundary. Assume that the flow is 
otherwise at rest, and denote by pa the pressure at infinity, far from the axis. The 
pressure at the vortex axis will be approximately p(x) = pa - pui(x), where p is the 
density of the fluid. It is clear from those relations that the pressure at the axis is low 
where the core is narrow and high where it is wide. This generates a pressure gradient 
that drives an axial flow from wide to narrow regions, and which tends to counteract 
the deformation of the vortex. As fluid flows into the narrow sections, they tend to 
become wider, and vice versa. 

The result is an axial wave that was already known to Kelvin (1880), whose 
celerity is c w O(u0). If the flow were inviscid, there would be no obvious mechanism 
to damp these waves, although they are known to be dispersive, and any initial 
condition would probably degenerate into a disorganized wave train, in the same 
way as gravity waves in water. Moreover, their nonlinear evolution is thought to 
include vortex ‘shocks’ and instabilities (Lundgren & Ashurst 1989), which could also 
be responsible for the decay of initial perturbations. Moore & Saffman (1972) had 
apparently some of these mechanisms in mind when they proposed axial waves as a 
means for the homogenization of vortex cross-sections (private communication). 

In viscous flows at moderate Reynolds numbers, waves of small amplitude are 
known to be damped by viscosity and, in a finite time, the vortex decays into a 
uniform core (Melander & Hussain 1994). In the early stages of the present work, 
we were able to demonstrate a more extreme example of the same phenomenon, in 
which a uniform core forms from several separate vortex pieces, or ‘sticks’, which 
can be considered as limiting cases of very narrow and wide core distortions. This 
‘relinking’ gives some support to one of the possible models for the formation of long 
vortices in three-dimensional turbulent flows, by which short vortex pieces would be 
formed by local stretching and would then relink into longer structures by means of 
axial waves (Jimenez et al. 1993; Jimbnez & Wray 1994b). 

A stronger test of this mechanism is shown in figure 4, in which the individual 
vortex pieces are not aligned, but form angles of 120”. The flow is still periodic 
in x, but no longer axisymmetric, and is therefore closer to the random alignment 
that can be expected in real turbulent flows. The computation of this case was done 
using a numerical scheme similar to the one described in $2, but in a Cartesian grid 
(Verzicco & Orlandi 1994). 

As in the case of aligned structures, waves develop and tend to amplify the vorticity 
in the weak regions between the sticks, and to weaken it in the sticks themselves 
(figure 4, t = 4). After some time ( t  = 8) the original vorticity distribution is reversed, 
and vorticity maxima and minima are interchanged. In the absence of viscosity this 
situation would give rise to new waves whose effect would be such as to restore the 
initial conditions but, at the low Reynolds number of the present case, the vorticity 
is diffused after the first oscillation, and the axial pressure differences are not strong 
enough to generate new waves. The result is the formation of a curvilinear vortex 
with an almost uniform core which continues to diffuse under the effect of viscosity 
(t = 16). 

R.  Verzicco, J.  Jiminez and P. Orlandi 
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t = O  t = 2  t = 4  

t = 6  t = 8  t =  16 

FIGURE 4. Iso-surfaces of vorticity magnitude for angled sticks at Rer = 200. Iso-surface is always 
drawn at IwI = 0.6 I w,,,(t) I. The initial angle between stick axes is 120" (64 x 64 x 64 grid). 

t = O ,  Lx=4. t = 8 ,  Lx=6.61. t = 16, Lx=10.93. 

FIGURE 5. Perspective views of iso-surfaces of I w I= 0.3 in uniformly strained vortices. Rer = 200, 
S = 0.063 (64 x 64 x 64 grid). 

3.2. Uniformly strained vortices 
In the previous example the vortex, once formed by relinking, diffuses by the effect 
of viscosity. If this process is to be important in real turbulent flows, it has to be 
compatible with the vorticity amplification produced by vortex stretching. To test this 
point we undertook a few numerical experiments in which axial vortex relinking was 
induced in the presence of a uniform axial strain. The velocity field induced by such a 
strain is not periodic and some modification of the numerical code was needed. This 
was done by deforming the numerical grid in time to follow the velocity field induced 
by the strain (Rogallo 1981). In the deformed grid the flow is again periodic in x, 
and the code described above can be used. 

The results of the simulation are shown in figure 5 and show the same tendency 
of axial waves to make the core uniform. Contrary to the unstrained experiments, 
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FIGURE 6. Carpet plot of the axial vorticity at the axis for Case 20 of table 1. Tick marks are at 
every x = L/4 on the x-axis and t = 20 on the t-axis. 

the external stretching present in this case acts to balance viscous diffusion and the 
Burgers equilibrium solution is attained. One additional result of this experiment 
was the numerical check that the radius of the resulting vortex did agree with the 
theoretical Burgers prediction. 

Even if long strong vortices can be created in this way, we have already argued that 
this cannot be the mechanism by which the strong filaments of turbulent flows are gen- 
erated. The rest of this section will be devoted to the discussion of how infinitely long 
vortices can be created from strain fields with zero average, for which the maximum 
driving axial velocity difference stays bounded. The condition of zero average strain 
is probably too strict, and there is evidence from direct simulations that some mean 
stretching is present along the strong vortices of turbulence (Jimtnez & Wray 1994a), 
but the fact that we obtain infinite steady vortices even in this extreme case shows 
that there is at most a weak relation between the coherence length of the driving 
strain and that of the resulting vortices, and that the explanation for the latter should 
be looked for in other factors. 

3.3. Non-uniformly strained uortices 
All the experiments in this section were run with the periodic driving strain given by 
(2.5), and are listed in table 1. We summarize the behaviour of a typical case (Case 
20) before going into the description of the different flow regimes. 

Its temporal evolution is illustrated by the carpet plot in figure 6, which displays 
the axial vorticity, ox, at the axis. Time runs from right to left. Initially, the vortex 
is uniform and its constant vorticity is displayed as the first line to the right of the 
plot. As the driving flow is turned on, the vortex reacts to the local rate of strain, 
and its vorticity increases where the strain is extensional and decreases where it is 
compressive. When the vorticity differences along the axis becomes high enough, 
the axial pressure gradients become active, and react so as to oppose the axial non- 
uniformity. The process continues with weaker waves until, after a few oscillations, 
the vortex stabilizes into a non-uniform but steady configuration. 

This is counterintuitive since, while it is clear that viscosity would eventually 
equilibrate the radial transport of vorticity whenever the stretching is positive and the 
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c' 

C S 

FIGURE 7. Contour plots of (a) ax ( A o x  = 0.1) and ( b )  or (Amr = f0.0125) in Case 24 of table 1: 
(AY, = f0.09). 

radial velocity moves towards the axis, it seems equally clear that, in the regions where 
the vortex is being compressed, diffusion and convection both work to move vorticity 
away from the axis and no equilibrium would be possible. The flaw in this argument 
is independent of the presence of axial waves and is easiest to understand in the case 
in which the vortex is weak enough for its vorticity to be transported passively by 
the driving flow. The equilibrium state for one such case is shown in figure 7 .  Part (a)  
of the figure shows axial vorticity, while (b)  shows the radial component. Both maps 
include a few streamlines of the meridional flow which, for this weak vortex, coincide 
almost exactly with those of the driving strain. The figure displays a full wavelength 
of the computation, with x as the horizontal axis, and r as the vertical one. The most 
extensive location is at x / L  = 0.5 (point S ) ,  while the most compressive is at x = 0 
(point C). This arrangement will be kept for all the maps in this paper. 

Near point S the vortex is compact, owing to the effect of the radial inflow, and its 
radius is near the Burgers limit, in equilibrium between inflow and diffusion, 

RB = (v/S)'I2 = LRe-'I2 L .  (3 .1)  

As the flow moves towards the left, the streamlines begin to diverge, the vorticity is 
carried outwards, the vortex becomes thicker, and radial diffusion becomes negligible. 
The vorticity is convected both outwards and towards the outgoing streamline CC', 
and the resulting flare is clearly seen in figure 7a. At the same time vortex lines are 
deformed and part of the axial vorticity is rotated into a radial component (figure 7b). 
In an inviscid flow the vorticity would eventually be carried to infinity as a thin sheet 
on both sides of the outgoing radial streamline. It is easy to estimate the thickness of 
this sheet. Assume that we are close enough to C that I l ( r p )  = p r / 2  and sin(px) rn px. 
The driving flow (2.2) can be approximated as 

us w -Sx, us = S r / 2 ,  y - r x. (3.2) 

= L R ; . / ~ ~ ,  (3.3) 

2 

The vortex is roughly limited by the streamline going through r = RB at x = L, 

which delimits the vortex layer around CC'. We then observe that viscosity becomes 
important as the layer becomes thin enough, and eventually cancels it, preventing 
the leak of circulation to infinity. Because of (3.2) the flow in the neighbourhood of 
the outgoing streamline is subject to a stretching of magnitude S ,  and the thickness 
of the viscous layer will again be O(&). Cancellation will occur when the thickness 
(3.3) falls below RB, at radii larger than 

TA W LRe,''4. (3.4) 
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FIGURE 8. (a) Decay of axial vorticity in the flare region (x = 0) for four cases in the Burgers regime 
(Cases 13, 14, 23 and 24 of table 1). (b)  Test of algebraic behaviour in equation (13) for axial 
vorticity in Case 14 of table 1. -e, r = 3 R / 8 ;  ---, 4R/8; -.-, 5 R / 8 ;  ----, 6 R / 8 ;  ......--, 
7R/8; - 7 R. 

An analysis of this viscous layer follows. In the neighbourhood of CC’ the vorticity 
transport equation can be approximated by 

where the first two terms are convective transport, the third one is vortex stretching, 
and all the gradients except the one normal to CC’ have been dropped from the 
viscous term in the right-hand side. This equation is parabolic in the time-like 
variable r,  and tends to a similarity solution of the form r a f ( x )  when r + 00. Direct 
computation, together with the obvious boundary conditions for f(x), results in 

ox - r-4 exp(-x2/2~i). (3.6) 

Note that the vorticity falls algebraically to zero at large distances from the axis, and 
that the circulation, J rwX dr, converges at large radii. This last observation shows 
that there is no loss of circulation to infinity, and supports the claim that the long 
time limit of the evolution of the vortex is a steady state. 

We shall say that vortices weak enough to behave in this manner are in the Burgers 
regime. They have a neck region of radius 0 ( ~ 5 R e , ” ~ ) ,  where they are stretched, and 
a ridge at the points of compression in which the vorticity decays algebraically to 
infinity, with characteristic radial scale 0(LRe,1’4). This analysis is tested in figure 8. 
Plot (a)  shows the decay of the vorticity in the ridge region for four different cases, 
showing the correct scaling with rA. Plot (b)  tests equation (3.6) for one particular 
case, showing the convergence of the decay to its asymptotic behaviour. 

The maximum ox of vortices in this regime occurs at the axis of the neck, and 
agrees very closely with that of a uniform Burgers vortex subject to the stretching S, 

S Rer 
4x 

0, = -. (3.7) 

The maximum vorticities at the axis for all our computations are summarized in 
figure 9, as a function of the Rossby number, Ro, and of the dimensionless strain 
C-J = SL2/T.  The Burgers regime is at the left of the figure, and equation (3.7) is 
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FIGURE 9. Maximum axial vorticity at the axis us. Rossby number: - , Burgers limit; 
m, u = 28.4; o , u = 14.2; A , u = 7.2; 0, u = 3.53. 

Ro 

plotted as a solid straight line. The different families tend to that limit as Ro becomes 
small enough, but the quality of the limit is not the same for all the cases, and is 
specially bad for the upper curve, which corresponds to Q = 3.53. The reason for this 
failure is the radial inhomogeneity of the strain field (4), which increases as we move 
away from the axis, 

S ( I , X )  = s(0,x) (1 + y )  . 

The maximum vorticity (3.7) has been computed assuming a uniform strain while, if 
we assume that the vortex extends to a radius RB, the factor in (3.8) would range up 
to 

While the details of the correction are complicated and have not been pursued in 
detail, it is clear that the magnitude of the correction (3.9) can be substantial for the 
lower values of 0, and that (3.7) can only be expected to work for the higher strains. 

3.4. The onset of separation 
To determine the behaviour of stronger vortices, for which the effects of the axial 
pressure gradients should be significant, we ran tests at increasing Rer while keeping 
Q constant. It is seen in figure 9 that the axial vorticity goes first through a maximum 
and later decreases to some asymptotic value. The structure of the flow changes 
substantially. A sequence of four ox maps, corresponding to the same 0 and different 
Rer, is given in figure 10. 

The first of them is in the Burgers regime that was discussed in the previous section. 
In the second one the ridge becomes more pronounced, and a weak secondary vorticity 
maximum appears at x = 0, the point of maximum compression. In the third one, 
which corresponds to Case 20 whose evolution we followed in figure 6, the secondary 
maximum is more pronounced, and much of the vorticity is concentrated in a shell 
surrounding the core. The maximum intensity of the vorticity in this case is no longer 
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FIGURE 10. Contour plots of ox at the steady state for c = 14.2. (a) Rer = 12.5 (Case 13), 
( b )  Rer = 50 (Case 16), ( c )  Rer = 200 (Case 20), ( d )  Rer = 400 (Case 22), Aw, = 0.05. 

FIGURE 11. Maps of equilibrium vorticity for Case 20 in table 1 ;  (a) radial wr, Aur  = $0.02, 
(b)  azimuthal 08,  Awe = k0.2. 

at the axis, but in the peripheral shell. The last map corresponds to a further evolution 
of the same trend. The Rossby number of the second map is close to the point in 
figure 9 where the axial vorticity goes through its maximum, while the third is in the 
decreasing part of the curve, and the last one in the right-hand-side asymptote. 

These changes in the flow structure are accompanied by substantial axial rotational 
flows, and by large scale separation. Figure 11 shows maps of radial and azimuthal 
vorticity for Case 20. The radial vorticity shows the same ridge structure as in the 
Burgers regime, but is now accompanied by a strong azimuthal component, which 
corresponds to a strong axial flow and to a coiling of the vortex lines. These are 
the effects of the axial pressure gradients, and change the strain which is felt by the 
vortex near the axis. Figure 12 shows the evolution of the rate of strain at the axis as 
Re= is increased. Positive values are stretching and negative values are contracting. 
In the Burgers regime, the strain is sinusoidal and coincides with that of the driving 
flow. As we increase R e r ,  the strain in the stretching region changes little, but an 
incipient flow reversal appears near the compressive stagnation point. The reversal is 
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FIGURE 12. Axial strain at the axis at the steady state for cr = 14.2: - , Rer = 12.5; 

---- > ,  37.5. .....-.. 2 )  100- ---, 400 (respectively Cases 13, 15, 18, 22 in table 1). 

FIGURE 13. Contour plots of meridional streamlines at the steady state: (a) Rer = 12.5 (Case 13), 
(b) 37.5 (15), (c) 50 (16), (d )  100 (18). --.---.-,negative; ---- , positive values; thick solid line I,U = 0. 
Only values IwI < 0.051 are plotted. Ay = 90.01. 

complete in the third curve, in which the compressing region has become stretching 
and most of the initial stretching has become a compression. In the last curve, most 
of the axis is weakly stretched and the only compression is in a short region near 
the initially stretching stagnation point. These changes, of course, apply only to the 
neighbourhood of the axis, where the axial pressure gradients dominate. The strain 
field outside the core remains essentially unchanged. 

The streamlines of the meridional flows corresponding to this process are shown in 
figure 13, where the appearance of a separation bubble at the compressing stagnation 
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FIGURE 14. Rer = 400, 0 = 14.2 (Case 22 in table 1): (a) velocity vectors (only vectors close to 
the axis are plotted); ( b )  meridional streamlines, Av = hO.01, only Iy( < 0.051 are plotted. ----, 
positive; ....----, negative values; thick solid y = 0. 

FIGURE 15. Perspective view of a vortex line for the case 20 in table 1. The left part shows the 
coiling and unwinding in the flare region while the right part is in the ‘neck’ of the vortex. 

point is clear. The bubble grows with increasing Reynolds number, until it fills most of 
the vortex. At the large Rer the meridional flow in this bubble is essentially stagnant 
(figure 14), and is separated from the external flow by a thin vorticity layer which 
supports the velocity difference between the two regions. This layer contains mostly 
axial vorticity near the neck and azimuthal vorticity towards the ridge (figures 1Oc and 
ll),  and the maximum intensities of both components are comparable. Its vortex lines 
are axial at the neck, where they accommodate the difference in azimuthal velocity 
between the vortex core and the irrotational external flow, and coil as they approach 
the ridge to accommodate the axial velocities induced by the pressure gradients. As 
they cross the outgoing radial streamline the direction of the coiling changes as the 
axial velocity changes sign, and the vortex lines unwind to meet the neck of the next 
wavelength (see figure 15). 

If the Reynolds number is increased further, the flow changes little. The location 
of the dividing stream surface becomes independent of Reynolds number, but the 
peripheral shell becomes thinner. It is tempting to speculate that the limit for infinite 
Reynolds numbers might be unique and would consist of a completely stagnant 
bubble, surrounded by a vortex sheet containing all the vorticity. It would then 
be possible to compute explicitly the shape of the dividing shell. This scenario 
is, however, unlikely. While the meridional flow becomes weak at large Reynolds 
numbers, the axial vorticity is not expelled completely from the core and, as we have 
seen in figure 9, the maximum vorticity at the axis seems to approach a non-zero 
limit. The presence of axial vorticity in the core is also seen in the maps in figure 
10. It is kept there, in spite of the viscous diffusion, by the secondary flow of the 
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separation bubble, and it should be observed that there is a possible limit in which 
a vortex with vanishing viscosity can be kept concentrated by a secondary flow of 
vanishing intensity. 

The radial distribution of axial vorticity is shown in figure 16 at four Reynolds 
numbers. In each cases there are three profiles, corresponding to the sections of 
maximum compression and extension, and to an intermediate point. In figure 16(d), 
corresponding to the largest Rer, it is clear that most of the vorticity is expelled 
from the core at the point of maximum extension, but that the intensity of the vortex 
inside the separation bubble is not small and has actually increased with respect to 
those at lower Rer. The large Reynolds number limit is difficult to study numerically, 
and its analysis as a perturbation problem is beyond the scope of this paper. Its 
interest would, in any case, be mostly theoretical, since it is unlikely that such complex 
configurations would remain stable in fully three-dimensional inviscid flows. 

The plots in figure 16 are interesting from the point of view of the possible 
relation of these vortices to the ones observed in turbulent flows. At low Rer, 
the profile is everywhere Gaussian, but there are large differences in the central 
vorticities, and any attempt to track the structure would probably interpret it as 
a series of short disconnected vortices, associated with the stretched regions. At 
very large Reynolds numbers the situation is reversed, with Gaussian vortices in the 
compressed regions, associated with the bubbles, and hollow shells separating them. 
At intermediate Reynolds numbers, corresponding to figure 16b, c, the vorticity is 
more or less compact everywhere, and the structure can easily be interpreted as a 
continuous vortex. This region corresponds to the vorticity maxima in figure 9, and 



384 R. Verzicco, J .  Jimdnez and P. Orlandi 

it is the most likely candidate for the identification of the long vortices observed in 
turbulent flows. 

The coiling of the vortex lines, and the presence of a stagnant bubble has been 
reported often for the related phenomenon of vortex breakdown (e.g. Leibovich 1978; 
Lhpez 1990), and the importance of azimuthal vorticity has been stressed both for 
the generation of axial waves (Melander & Hussain 1994) and for the initiation of 
vortex breakdown (Brown & L6pez 1990). 

3.5. The criterion for separation 

The Rossby number used in figure 9 to display the results of the numerical experiments 
was introduced in equation (2.4) as the ratio of azimuthal to axial velocities for a 
vortex with a radius of the order of the Burgers length RB. Criteria based on swirl 
numbers of this type have been proposed often as onset criteria for vortex breakdown 
(Leibovich 1978; Keller, Egli & Exley 1985, and references in the introduction of 
Brown & L6pez 1990). Since our separation occurs on vortices near the Burgers’ 
limit, it was hoped that a swirl number based on that radius would be useful as a 
criterion to predict its onset. It is clear from figure 9 that this is not so, and that there 
is no collapse among the different curves when plotted in terms of Ro. In retrospect 
this is not surprising, since our vortices are not cylindrical and there is a whole range 
of radii and axial velocities. Swirl number criteria tend to be based on linearized 
analyses of uniform vortices, and it was already noted in Brown & L6pez (1990) that 
they did not work for their confined breakdown. 

On the other hand, since we have a reasonably clear idea of the structure of our 
flow, and of the phenomena which accompany separation, it is fairly easy to construct 
a qualitative criterion for its onset. We know that the first symptom is the appearance 
of a small separation bubble at the axis at x = 0, which corresponds to a reversal of 
the axial strain at that point from compressive to extensive. This has to be due to the 
effect of the axial pressure gradients generated by the centrifugal forces in the vortex, 
to which the analysis in 53.3 should still apply. 

Consider a vortex shape defined by the streamline in equation (3.3), which can be 
rewritten near x = 0 as 

R NN RB(x /L) - ’ / ’ .  (3.10) 
The characteristic azimuthal velocity in such a vortex is ue = T / R  and the pressure 
drop across the core is 

(3.11) 

Since this pressure gradient is responsible for the axial flow, we obtain from 
Bernouilli’s theorem along the axis 

(3.12) 

This induced velocity moves along the axis away from the origin, and tends to 
counteract the velocity of the driving flow, us w -Sx .  Since up behaves like a lower 
power of x ,  this simple theory predicts that the induced velocity always wins close to 
the origin, and that there is always a separation bubble. By equating the magnitude 
of both velocities, the size of this bubble can be shown to be proportional to L Ro’. 

It is easy to see that this estimate is wrong for small Ro, because (3.11) is a 
boundary layer approximation which assumes a slender vortex in which longitudinal 
gradients are negligible with respect to radial ones. This is not true near x = 0, where 
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FIGURE 17. Maximum axial vorticity at the axis us. the local separation parameter: 
, Burgers limit; m, 0 = 28.4; o , 14.2; A , 7.2; 0, 3.53; x , 6.12; + , 21.2. 

the vortex is essentially 'spherical'. The assumption of slenderness breaks down when 
x < R in equation (3.10), 

x < xo w & w LRei'/3. (3.13) 
Within this region we have to use the full Poisson equation for the pressure 
(Bradshaw & Koh 1981), 

v2p/p = 1012/2 - )Sl2 = O ( 0 2 ) .  (3.14) 

If we assume that the pressure is roughly isotropic near the origin and that the mag- 
nitude of the vorticity within the 'spherical' portion of the vortex is also homogenized 
by viscosity to O(r/g), equation (3.14) can be solved as 

and the induced velocity is 

(3.16) 

Since the induced velocity is now linear in x ,  separation only happens when the 
induced strain is larger than S ,  and the separation criterion is that 

(3.17) 

This parameter is intermediate between the Rossby number, which came from an 
oversimplified analysis of the vortex as a uniform cylinder, and the prediction of 
unconditional separation, which came from a naive interpretation of its shape as a 
boundary layer. The correction takes into account that the effect of the ridge on the 
pressure is filtered by non-boundary-layer effects near the singularity at x = 0. 

Brown & L6pez (1990) derive a breakdown criterion which is based on the max- 
imum angle between the vorticity and velocity vectors in their undisturbed vortex 
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cores. That criterion is inapplicable here, because our pressure gradient is part of the 
boundary conditions, and there is no ‘undisturbed’ state. In fact, it is easy to show 
that the maximum angle between the vorticity and the velocity is always n/2 in our 
case. 

The data in figure 9 are replotted in figure 17, in terms of the new parameter. The 
collapse is now much better, specially for the high-o cases in which the effect of radial 
inhomogeneity of the strain (equation (3.9)) is absent. In particular the location of 
the maximum vorticity, which signals the onset of separation, is now almost the same 
for all values of 0, while previously it varied by over a factor of two in Ro. Also, 
the two curves corresponding to the highest 0 coincide almost exactly over the whole 
range of Reynolds numbers. 

4. Conclusions 
We have shown that steady-state vortices can form under the effect of inhomo- 

geneous straining, even in the case in which the axial mean value of the applied 
strain is zero. Even in that case, in which it can be said that the vortex is not 
being stretched at all, the mean radius of the vortex is close to the Burgers radius 
corresponding to the magnitude of the strain fluctuation. This is specially so in a 
narrow range of vortex circulations, in which Rer w Weaker vortices tend to 
break into disconnected pieces, associated with the locations at which the stretching 
is maximum, and separated by gaps where the vortex is compressed. Stronger vortices 
break down under the effect of the induced axial pressure gradients. 

The structure of the flow has been studied in detail, and a theoretical analysis has 
been presented for the weak vortex limit and the onset of separation. 

The investigation was motivated by the observation of long strong vortices in 
turbulence, with diameters which are of the order of the Kolmogorov scale q,  but 
with lengths which are much longer (Jimknez et al. 1993). It has been shown from 
direct numerical simulations that the axial strains in these vortices are of the order of 
the root-mean-square vorticity m’, whose Burgers radius is q (Jimknez & Wray 1994a), 
and that the correlation scale for this strain is again q (Jimknez & Wray 1994b). The 
results of the present work are fully consistent with the first part of those observations, 
since they show that it is the fluctuating part of the strain, not its average, which 
determines the radius. They also help to explain why the vortex can be much longer 
than the correlation length of the driving strain, since we have shown that they can 
be essentially infinite for periodic strains. 

The second goal of the investigation, to explain the empirical correlation (1.1) 
between the intensity of the vortices and the microscale Reynolds number of the 
turbulent flow, is less successful. It will be remembered that the experimental relation 
was Rer - Re!, with a in the range 0.3-0.5. Since the criterion for the onset of 
separation, and for the existence of vortices that would be identified as such, is 
given by equation (3.17), it is tempting to associate L to the Taylor microscale, and 
to use the present relation as a justification for the experimental one. We cannot, 
however, find any convincing reason for that association, and it seems to contradict 
the experimental measurements of the axial correlation length of the strain as q. The 
axial Reynolds number corresponding to a strain m’ with wavelength q is ReL - 1. 

Perhaps the most successful conclusion of the present work, as it relates to tur- 
bulence, is the explanation of why the velocity components of a turbulent flow are 
free of intermittency effects (Anselmet et al. 1984). From the moment that strong 
columnar vortices were discovered in turbulence, this observation became a problem, 
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since a strong strained vortex creates large azimuthal velocities. It was noted in 
Jimenez et al. [ 1993) that the empirical relation for the growth of Re= as a function 
of Red just avoided this dficulty. The circulation of the strongest vortices was just 
such that their azimuthal velocities were independent of Red, and were always of the 
same order as the root-mean-square velocity of the flow u’. The reason for that was 
not clear at the time, and it was hypothesized that it was due to the formation of the 
vortices from the roll-up of vortex sheets, which do not amplify velocity as they are 
strained. It was never clear, however, why vortex sheets did not roll up until they 
had reached their final intensities, or why the vortices were not stretched after they 
formed. 

The present paper offers a different explanation. It turns out that the stretching of 
a circular vortex cannot amplify velocity beyond the total velocity difference applied 
between its end points. Consider an ‘optimum’ vortex such that equation (3.17) is 
satisfied. Its minimum radius is still O(RB), and its maximum azimuthal velocity is 
ug = r / R B .  The maximum axial velocity difference applied to it is AU m SL, and the 
ratio of the two is 

As a consequence, the mechanism of the turbulent cascade has no way of amplifying 
velocities, even if it amplifies velocity gradients through vortex stretching, and velocity 
intermittency does not develop. Note that this limiting mechanism would have some 
influence in the formulation of models for the intermittency of the gradients, since 
most of them assume a more or less unconstrained amplification of vorticity, while 
the present mechanism, imposed by the nonlinear effect of axial pressure gradients, 
represents a global limit on how far gradients can be amplified. 

The research was partially supported by the Human Capital and Mobility program 
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Universita e della Ricerca Scientifica e Tecnologica”, MURST MPI 60%. This work 
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